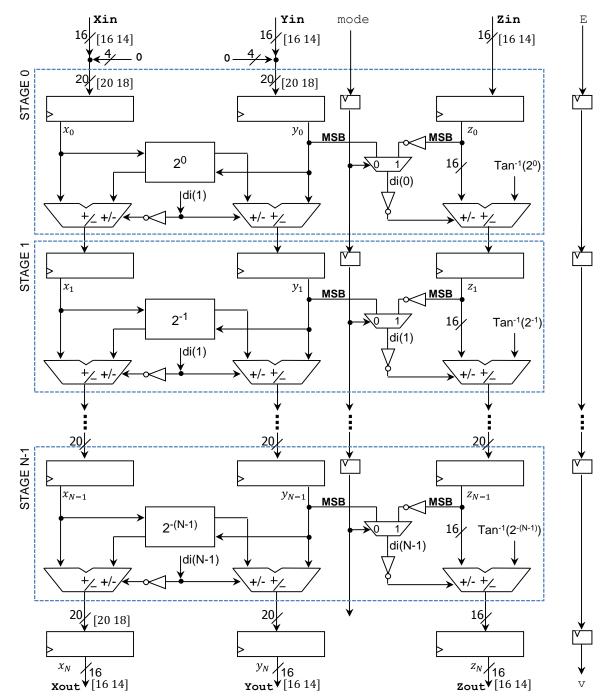
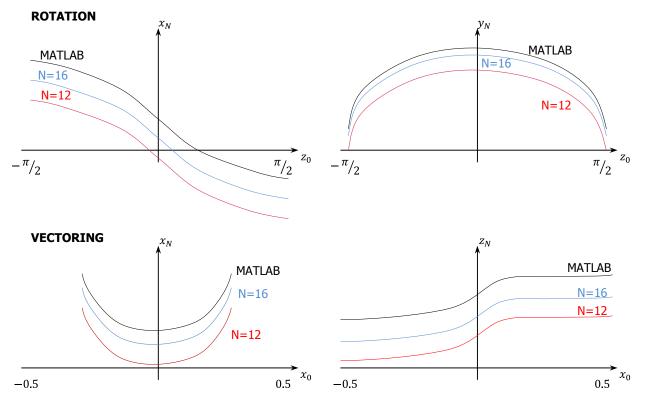
Fall 2015


Homework 4

(Due date: November 18th @ 7:30 pm)

Presentation and clarity are very important! Show your procedure!


PROBLEM 1 (60 PTS)

- Design the pipelined Circular CORDIC architecture with *N* iterations shown in the figure below.
- The circuit must have N as a parameter. N = 4 to 16.
- Attach a printout of your VHDL code.

PROBLEM 2 (40 PTS)

- Create a testbench to test your CORDIC circuit. The testbench should test the following cases for N = 12 and N = 16.
- ✓ Rotation Mode: $x_0 = 0$, $y_0 = 1/A_n$, $z_0 = -\pi/2$ to $\pi/2$. For z_0 , we test 100 equally-spaced values between $-\pi/2$ to $\pi/2$.
- ✓ Vectoring Mode: $y_0 = 1, z_0 = 0, x_0 = -0.5$ to 0.5. For x_0 , we test 100 equally-spaced values between -0.5 to 0.5.
- Your testbench must write the output results in a text file.
- MATLAB® (or Octave): Read data from the testbench output file and <u>plot</u> the results (for N = 12, 16 and for rotation and vectoring mode) with the results of the functions to which the CORDIC results converge (use MATLAB®).
- Important considerations:
 - ✓ The CORDIC algorithm in the vectoring mode for Z tends to: $z_n = z_0 + atan^2(y_0, x_0)$. This is not exactly the arctangent function.
 - ✓ Keep in mind the range of convergence: for some arguments, the CORDIC results might not converge to the expected function (MATLAB®) values. The figure below is just referential.

• Attach a printout of your: i) VHDL testbench, ii) input text file for testbench, iii) output text file from testbench.